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ABSTRACT

The paper proposes the concept of automated cotistruof test suites and test oracles for testiptingizers.
It uses an approach based on the generation ofptat#rns. The main ideas of the model approachaaréollows:
1) modeling language implicitly breaks many progsamarget language into equivalence classes; 2Ltestrage criterion
is formulated in terms of the model of languagejrBlaccordance with the selected set of test @iter generated.
In this paper, we describe a scheme for constyicintest oracle that checks the semantics preganvatogram after

optimization.
KEYWORDS: Implicitly Breaks Many Programs, Terms of The Mbdf Language

INTRODUCTION

Compilers [12, 3] - is the main tool for creating software, so thegliability is particularly important.
Along with other verification and validation Technies for compilers, testing still remains an imanttelement in
the family of these methods. The need to automedtng of compilers also seems obvious, since ¢ia¢ volume of

good-quality test kits and the complexity of thalgsis results is very high.

Approach Unit Tasks [4] is a methodology for builglireliable and quality software based on the usthie

software model. Unit Tasks model approach usefottmwving purposes.
» To Build the Correct Implementation of the Criteiaa the Software,
» For Constructing Criteria for Completeness and difeness of Audit Quality Assurance,
» For the Construction of Input Test Data and Analy&iocedures Based on the Results of the Target.

In a narrow sense Unit Tasks proposes to consider model as a tool for building a test target swste

The process of test development and testing itsélifrided into the following phases:
« Constructing an abstract model or specificatiothefbehavior of the target system.
* Removing the test oracle (i.e. the target systanrdbult of the analysis procedure) of the spetifio.
*  The decomposition of the input data to the targstesn domains,
» Design criteria for test coverage in terms of theteact model.

* Integration of the generated and manually writest system components.
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e Skipping tests, including

» Analysis of the target system using the resultheforacles;

* Measurement in terms of test coverage models peciications in terms of implementation.
The main advantages of this approach are as fallows

» Specifications and models are usually built onlthsis of functional requirements for the systend, aften BOM
structure follows the structure of the requirementisich allows explicitly link the system requirents with the

test results and test coverage metrics.

e Specifications and models, and therefore testsbeadeveloped to complete the implementation ofténget

system, which reduces the overall time of softwireelopment.

e Specifications and models are usually more compadt easier to implement, making it easier to re-skid

maintenance of both the models and tests thatasedoon them.

» Achieving comprehensive coverage in accordance ttieh criteria set out in the specifications and eisd
as a rule, provides the implementation level oferage comparable to the level achieved in the cuiomal

testing, but due to significantly lower labor costs

Unites approach has been tested in projects watinteof both existing and newly created softwéare]| 7]. Task

force on these projects belongs to different ckasd&Systems that provide a procedural interface:
e Operating system kernel,
* Telecommunication protocols,
* Servers,
* Run-time support for compilers and debuggers.

Following the general scheme Unites process destriove, it was possible to fully automate thekwairases

2, 3,5, 6. Phase 1 is performed manually, phasse#i-automatically.

Transfer of experience and tools for testing coenpilunit Tasks revealed a number of problems. imadhicle,

we describe the application of this approach tbrtgsnodules in optimizing compilers.

The main problem here is that there is no effeatiethod to create optimizer such specificatioranfivhich one
could extract the effective oracles. Thereforethia proposed approach, we use only the followingidUhasks phase

process.
» Constructing an abstract model of the input dathefarget system.
» Design criteria for test coverage in terms of thstect model.
» Integration of the generated and manually writest system components.

e Skipping tests, including
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» Analysis of the target system using the resultheforacles;
* Measurement in terms of test coverage models pexications in terms of implementation.

Under the proposed approach, Oracle verifies onéy greservation of the semantics of the prograningur
optimization. To do this as a test actions areriake the optimizer program such semantics are fahresented their
route. This test allows the property to reducepiteblem of semantics checking, saving comparedréfeaence track with
the track.

Thus, the essence of the approach is as follows:

» Build Optimizer to test a representative set of &esions as follows:
e To Construct an Abstract Model of the Input Dataifijzer;
e In Terms of an Abstract Model to Formulate A Ciiberto Cover These Inputs;
* To Sort Out the Appropriate Test Actions;

*  Optimizer Test as follows:
*  Skip Tests by the Compiler When the Test is Acddathe Optimizer;
» Verdict on the Preservation of Semantics tests &ffgimization.

In the following sections of this article we deberithe details of the testing process optimizeecsordance with
the proposed approach. At the end of the experimhelata on the application of the methodology aseussed the range
of applicability and limitations of this approa@nd provides an overview of related work.

A preliminary version of this article was reportatthe international seminar = Understanding tlogams' [20].
CONSTRUCTING AN ABSTRACT MODEL
The model is based on an abstract descriptioneobftimization algorithm.

The optimization algorithm is formulated using teemsdenoting the essence of a suitable abstract peg&en
of the program, such as the control flow graphadéw graph, the symbol table and so on. The dpémfor its
transformation, seeking a combination of entitibsteact submission programs that satisfy ceppaiterns(e.g., the
presence of program cycles, the presence in thg bbthe loop structures with specific propertiestie presence of
common subexpressions procedure, depending orrdéisernce of data between instructions, etc. of ssore). This may
be considered a part of the essence of the termbuild the model, we will consider only those terthat refer to entities

that are involved in at least one template.

So, as a result of algorithm analysis highlighteins and patterns used in the algorithm. Nextherbasis of this

information describes a set of modteiilding blocks
» Each term corresponds to a kind of building bloakde;

e The building blocks can be linked together to ble &b form structures that match the patterns.
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Example

Weak-Zero SIV Subscripts analyzer.Consider the analyzer gathers information on amgnfof dependence of
data for subsequent use of this information inedéht optimizers. Namely, consider the Weak-Zerd Subscripts

analyzer (see. Eg.3])

The termsubscriptis used to denote a pair of expressions that sed in a pair of hits in the loop in a single
(possibly multi-dimensional) array, and standinghie same position in the index. Subscript cadle8IV(the single index
variable), if the corresponding indexed position used exactly one index variable. SIV subscriptpeteling on
the induction variable i, is callegeakly zerqweak-zero), if it has the forsai + ¢ 1, ¢, > wherea, c 1, C, - constants
anda# 0.

The relationship between the two calls to the amagts if and only if the appeal to the commomeadat enters

the loop border. This happens only when the vafue o

. £ —
i1

It is an integer anl <i o < U, whereL andU, respectively lower and upper limit cycle.

This algorithm uses the following terms: SIV sulstris determined by three factasc; andc, ; cycle

determined by its lower bouridand an upper limit ahe U The algorithm searches the following template:

fy {0

L< <U

L
Thus the model consists of the following buildingdks:
e SIV subscript, contains three attributes that spoad to the values ¢ ; andc, ;
e The cycle containing two attributes that corresptnthe values of andthe U, as well as many SIV subscripts.

For the special case optimizations, working witlths@an abstract representation that is close tosyimactic

structure of the program, you can use the methambo$tructing a model based on the idea of redugffammars (see.
[8).
Example

Control Flow Graph optimizer. Consider the optimizer, which performs the transfaion to simplify the

procedure of the control flow graph.

The termlinear section(basic block) represents a sequence of instrugtishich begins with the tags may end
with a conditional or unconditional jump, and caon@in a sequence of non-transition instructionebr area

calledemptyif it does not contain non-transitional regulatson
The optimizer performs the following transformation

» if some transitiond ; leads to the label ; of a blank of a linear plot that culminates undtindal transitionJ , on
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the labelL ,, thend ; is transformed into a direct link to the lahs] ;

« if both branch conditional branchare on the same labef L, thenJ is transformed into an unconditional jump to
the labelof L ;

» If the labelL of a linear sectioB is not used in any transition, tBeudalat.

This algorithm optimization uses the terms: lingéot, conditional jump, unconditional jump. The @lghm

searches for the following patterns:

e TransitionJ ; leads to the labél ; of a blank of a linear plot that culminates undtiadal transitionJ , on the
labellL ,;

» Both branches of the conditional jurd@re on the same levet L
e The labelL is not used in any transition;

This algorithm uses a control flow graph as anrabstrepresentation of the processed program. itkia is
closely related to the syntactic structure of thegpam. Reduction of the grammar of the languagmnal you to get a

model that consists of the following building black
e The procedure comprising a sequence of linear segme
e The linear portion comprising a label, the transitand the attribute ~~ empty ";
* The label that contains the attribute ~* unused ";
« Unconditional branch containing a reference tabzlia
» Conditional jump, containing references to the mark

We callthe model the structure die graph, whose vertices - the building blockd #re edges - the connection

between the building blocks.

The projection of the proposals in the originalgaage model structures induces a partition of therce
language sentences into equivalence classes. Quigakupce class consists of proposals that havestilee model
representation, ie, that are indistinguishableht® dptimization algorithm. This property allows s put forward the
hypothesis that in the equivalent proposals optmizorks equally. Therefore, the desired test se@iot enough to have

more than one representative from each equivalelass.

Since the set of model structures, ie, the setjoivalence classes, in general, is infinite, tateea test suite, we
must choose a finite subset. The reason for thtegcehshould serve as templates that were identifigde analysis of the

optimization algorithm. Thus, the test coveragéedia stated in terms of an abstract pattern.
Example

Criterion test coverage analyzer Weak-Zero SIV Submipts. Recall that the analyzer Weak-Zero SIV

Subscripts searches the following templafd: i <, < U andi o unit, where o am determined by the relation
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£ —
{1

1)
Formulate an appropriate criterion test coveragerims of the model, i.e., in termslgfU, a, ¢, andc ,.

Fix L, U andc - integers. Letake valued and2. We want td ¢ is an integer of a set, as well as any non-integer

values. Suppose that includes the plurality ofgate which satisfy one of the following requirengent
e ipo<L, for examplejo=1L-1;
e jg=ofL;
* ipislocated close th within the range defined by the boundaries ofdyde, for example,o =L + 1 ;

* ipislocated in the middle of the interval defingdtbe boundaries of the cycle, for examplesr [ I

* ipis situated close to thé within the range defined by the boundaries ofdyele, for example, o = U-1;
e ig=the U;
* io>U,forexamplej,=U + 1.

To find the value of , is sufficient to solve the equation (1) with rest® the values cd andi .

THE APPROACH TO THE PROBLEM OF VALIDATION CONSERVAT ION PROGRAM
SEMANTICS DURING OPTIMIZER

When testing an important task it is to analyzedbeect operation of the system under test. Fercdse of an

optimizer such analysis consists of two parts:
» check that the semantics of the program has naetgelthsince the optimizer;
» Verification that all were produced optimizes trimmmation.

In this paper we are not concerned with verifyihgttall the transformations were made. We condideg only

the necessary part of the oracle, namely the prasen of semantics checking program after optitniza

The problem of semantics checking saving any progia the processing of its optimizer is equivalént
the problem of testing the equivalence of two paogs. This problem is generally not solvable. Howefar certain types

of programs, such a problem can be solved. For pkeamrograms which are fully functional semansesm their route.

Recall that we consider being indistinguishableimijger programs that correspond to the same model
structure. Thus, it is possible as representatdfesquivalence classes to select the program, wisidhlly functional
semantics seems route. For such programs, theofasteserving the semantics checking during opematiompared to
the optimizer reduces the route-optimized softwamd a reference line. As such a standard we suggeste the road,

issued by non-optimized version of the same program
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Example

How to trace in the test analyzer Weak-Zero SIV Suscripts. Below is an example of the impact test analyzer

Weak-Zero SIV Subscripts in the C programming laaggu

01: void f (int i, int * a, int * b, int * ¢)

02: {

03: for (i=-10; i <=10; i ++) {

04: a [31] = b [i;

05:clilj=af2+22*i];

06:}

07: print_int_1_array (a, 2, 43);

08: print_int_1_array (b, -10, 10);

09: print_int_1_array (c, -10, 10);

10:}

Lines 03-06 contain a code, built on the modelctine. Lines 07-09 contain instructions for tracing

To solve the problem of semantics checking saviptifizer, you must have a lot of tests, and thelera
To build a test suite program will generétie B, having the following properties:

e numerous progran®is representative of the optimizer algorithm tést,this set corresponds to the selected
criteria of test coverage;

» eachP is compiled, i.e. syntactically and semanticatiyrect;

» eachP is completed correctly within a finite time;

» eachP contains some computation in areas that shouklibjected to optimization;

» Functional semantics of eafhis output, depending on all the available compguprogram.
Oracle job is as follows:

e Each testis compiled twice - with and without ap#ation ;

» both compiled version launched for execution;

» produced tracks are compared;

» Semantics is recognized preserved if and onlyefauivalent route.

Later in the article we consider in detail the @sses of generation and running tests.
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CREATING A TEST GENERATOR

We calltest the influence afdividual inputs to test the optimizer, ie progran the target language. The tecot
impact testepresents a single input to the result compitatibtest action, ie, parameter values correspanttirrun the
compiled programiterator to-test actions is the component that provides the necessamncoreration of test actions

and the launch of the compiled test action. Thisngletestincludes a test and impact test iterator co-factor

We need to develop an appropriate generator touprd plurality of tests for the target optimiZEhnis generator

should generate a representative set of test actiogether with the corresponding iterators to-detons.

Create generator representative set of test acsiamss with an analysis of the test algorithm mj#er build an

abstract model and a criterion for test coveragedescribed above. After that, the actual developroéthe generator
going.

Test generator consists of two components. The @iadledan iteratoris responsible for the consistent generation
of model structures. The second component, callet@per is responsible for displaying each model striectiur the

target language.
The iterator should create a set of model strustimr@ccordance with the chosen test coverageiorite
For a given model structu@mapper must construct the corresponding testtivétollowing properties:
» test action, built on the model structuretted S a model representation, which coincides lith S;

* hbuilt test (i.e. test action and iterator to-testians) is syntactically and semantically correctni the point of

view of the target language;
e test action comprises computing at locations thatikl be subjected to optimization;
» test action contains instructions for tracing timalfresults of calculations;

» iterator to-test actions contain instructions fog formation of all necessary parameters, as wdlstructions to

activate the compiled test action (ie, the calihef procedure or several procedures).

If the model assumes some calculations, then to foroute mapper inserts the text of the final é&esibn prints
the values of all the variables involved in thecoddtion. Otherwise mapper further inserts the téxthe impact test some

calculations, and for the formation of the tracgerts print the final results of these calculations

At the end of the iterator and mapper of develognteey are going into the generator. Thereafterdésired

generation test set.
RUNNING TESTS

To check the saving optimizer program semanticsazh test is required to compile with optimizatioompile
and compare the results obtained with the standargk. Recall that we offer as a benchmark to usssTunoptimized

version of the corresponding test.

Thus, the process of running tests and analysisistsrof the following steps:
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e Testing SEO:
e Compilation of tests enabled the optimization targe
» By Testing:
» launch the compilation of results for performance;
» Saving the resulting tracks (test track).
» Reference:
e Test compilation with optimization off target;
* launch the compilation of the results;
e Saving the resulting tracks (track reference).
* Running Oracle:
» Comparison of the test runs with the standard;
* Verdict to preserve the semantics during optimizatest.

The test is recognized optimizer preserves the stosaof the programs in accordance with the chdssh

coverage criterion if and only if Oracle issuedoaifive verdict for all tests.
The Practical Application of the Approach

Using this approach was built and tested a sefiéssts in several compilers optimizers for modanhitectures:
GCC, Open64, Intel C/ FORTRAN compiler.

Generators for the following optimizers have beewedoped:
»  Control Flow Graph optimization;
e Common Sub expression Elimination;
e Induction Variable optimization;
e Loop Fusion optimization;
e Loop Data Dependence analysis.
Matching sets of tests generated for C and FORTRANramming languages.
THE AREA OF APPLICABILITY OF THE APPROACH

The proposed approach is applied to test the iniperarogramming language compilers. The compasitid

such compilers tested modules on optimizations/amdgnalysis.

We believe that the approach is also applicabliter procedural optimizations, as well as to aewidlass of

languages, such as functional languages. Adagtm@pproach to be used in these areas - it im#heof the near future.
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RELATED WORK

Formal methods are used to build compilers and réieal proof of the correctness of their behavior.
Verify project [9] contains a theoretical development schemes dtcacting reliable compilers based on the appboat
of a series of intermediate languages. Furtherntbege are various attempts to implement reliablagilers using logical
calculations [L0, 11, 12]. It is also a purely theoretical work. Typicaliy offers a simple model compiler, built for him

logical calculus and shows a method of provingdbrectness of the proposed compiler.

In [ 13], proposed the idea of building specificationdimjzing transformations using graph redrawing eyst
(Graph Rewrite Systems). The author claims that ththnology is applicable to many specificatiohthe optimization
algorithms and program analysis. This approaclpézifying transformation, of course, is very intieg and can be used
for the construction of oracles. However, the pcattuse of the system redraw graphs requires ¢geehanical support, the

creation of which is a separate complex task.

There are also approaches to testing compilersditnaiot use formal methods. 114, 15, 16] contains the idea
of the implementation of the oracle that checks@neng the semantics of the program during thesfaamation, in the
absence of any specification performed optimizatidhshould be noted that a common shortcomintpede approaches
is the lack of a method for selecting the input tkgta. In addition, the approach describedi [ requires intervention in

the work of the compiler, which is unacceptabletésting industrial commercial products.

The paper [L7] describes the simulation based on the ideasetfimaology of automatic construction of tests for
the parser of formal languages. As a descriptiothefmodel used in the BNF-grammar of the sournguage. In [L8]

provides a methodology manual creation of tesséamantic analyzer model description language progira

In [19] describes an approach to test automation of sétnanalysis and code generation. Specificatiams f
vector and multi-language expressions were devdlop&SM language. The specifications used for filigrprograms
generated by relatively simple iterator, and toagbtreference results. Also based on these crieméagenerated test

coverage tools, and its assessment.

So, testing compilers is a very promising directiohis area there are many interesting studiesvever, so far

not offered any solution suitable for widespread msindustrial processes testing optimizing coemgil
CONCLUSIONS

To automatically obtain the representative test a&tre constructed on the basis of generatorsagbstescription
of the optimization algorithm. In the constructiohthe generators used tools and libraries, whietatly facilitates the
process modeling and generator components. Sorgesstd creation of the generator at the same tiave lbeen fully

automated.
The advantages of using the model approach awdlaws$:
* much less labor input than with writing tests mdlyyua
e systematic testing;

e easy maintainability received test sets;
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e The possibility of reuse of individual componentsh® generator.
These benefits are confirmed by the results ofrabrar of projects to test the commercial compilers.
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